Skip to main content
Log in

Growth, physiology, and chemistry of mycorrhizal and nonmycorrhizalTypha latifolia seedlings

  • Published:
Wetlands Aims and scope Submit manuscript

Abstract

We investigated the impact of arbuscular mycorrhizae fungi on common cattails (Typha latifolia), a ubiquitous wetland plant species. The mycorrhizal relationship, which involves the exchange of fungal-acquired nutrients and plant-produced carbon, has been shown to elicit a range of physiological and biochemical responses in host plants. Growth, photosynthetic activity, biomass accumulation, and nutrition were compared between seedlings inoculated with viable mycorrhizal fungal spores and control seedlings given a sterilized inoculum. Plants were grown in inundated soils at three levels of phosphorous availability under glasshouse conditions for 11 weeks. The presence of arbuscules and hyphae was confirmed in all inoculated plants with levels of infection reaching 23.1 and 34.1%, respectively. Control plants were taller and had greater above- and below-ground biomass. Photosynthetic rates measured at week 11 of the experiment were significantly higher in mycorrhizal plants than in control plants. Mycorrhizal plants had higher concentrations of N, P, and C in their shoots and higher concentrations of N in their roots. Our results suggest that under greenhouse conditions, the fungus acts to reduce host plant growth despite increased mineral nutrition and photosynthetic activity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Literature cited

  • Bethlenfalvay, G. J., R. S. Pacovsky, and M. S. Brown. 1982. Parasitic and mutualistic associations between a mycorrhizal fungus and soybean: development of the host plant. Phytopathology 72:889–893.

    Article  CAS  Google Scholar 

  • Blackwell, M. 2000. Terrestrial life—fungal from the start? Science 289:1884–1885.

    Article  CAS  PubMed  Google Scholar 

  • Bronstein, J. L. 2001. The exploitation of mutualisms. Ecology Letters 4:277–287.

    Article  Google Scholar 

  • Brundrett, M. C., Y. Piché, and R. L. Peterson. 1984. A new method for observing the morphology of vesicular arbuscular mycorrhizae. Canadian Journal of Botany 62:2128–2134.

    Article  Google Scholar 

  • Daft, M. J. and A. A. El-Giahmi. 1978. Effect of arbuscular mycorrhiza on plant growth. VIII. Effects of defoliation and light on selected hosts. New Phytologist 80:365–372.

    Article  CAS  Google Scholar 

  • Douds, D. D., Jr., C. R. Johnson, and K. E. Koch. 1988. Carbon cost of the fungal symbiont relative to net leaf P accumulation in a split-root VA mycorrhizal symbiosis. Plant Physiology 86:491–496.

    Article  CAS  PubMed  Google Scholar 

  • Fitter, A. H. 1991. Costs and benefits of mycorrhizas: implications for functioning under natural conditions. Experientia 47:350–355.

    Article  Google Scholar 

  • Fitter, A. H. and R. Hay. 2002. Environmental Physiology of Plants, third edition. Academic Press, Inc., San Diego, CA, USA.

    Google Scholar 

  • Graham, J. H. and D. M. Eissenstat. 1994. Host genotype and the formation and function of VA mycorrhizae. Plant and Soil 159:179–185.

    Google Scholar 

  • Harley, J. L. 1989. The significance of Mycorrhiza. Mycological Research 92:129–139.

    Article  Google Scholar 

  • Harris, D. and E. A. Paul. 1987. Carbon requirements of vesicular-arbuscular mycorrhizae. P. 95–103. In G. R. Safir (ed.) Ecophysiology of VA Mycorrhizae. CRC Press, Boca Raton, FL, USA.

    Google Scholar 

  • Hayman, D. S. 1974. Plant growth response to vesiclar arbuscular mycorrhiza. VI. Effect of light and temperature. New Phytologist 73:71–80.

    Article  Google Scholar 

  • Jakobsen, I. and L. Rosendahl. 1990. Carbon flow into soil and external hyphae from roots of mycorrhizal cucumber plants. New Phytologist 115:77–83.

    Article  Google Scholar 

  • Johnson, N. C., J. H. Graham, and F. A. Smith. 1997. Functioning of mycorrhizal associations along the mutualism-parasitism continuum. New Phytologist 135:575–585.

    Article  Google Scholar 

  • Koide, R. 1985. The nature of growth depression in sunflower caused by vesicular-arbuscular mycorrhizal infection. New Phytologist 99:449–462.

    Article  Google Scholar 

  • Lovelock, C. E., D. Kyllo, M. Popp, H. Isopp, A. Virbo, and K. Winter. 1997. Symbiotic vesicular-arbuscular mycorrhizae influence maximum rates of photosynthesis in tropical tree seedlings grown under elevated CO2. Australian Journal of Plant Physiology 24:185–194.

    Article  CAS  Google Scholar 

  • Marschner, H. and B. Dell. 1993. Nutrient uptake in mycorrhizal symbiosis. Plant and Soil 159:89–102.

    Google Scholar 

  • McGonigle, T. P., M. H. Miller, D. G. Evans, G. L. Fairchild, and J. A. Swan. 1990. A new method which gives an objective measure of colonization of roots by vesicular-arbuscular mycorrhizal fungi. New Phytologist 115:495–501.

    Article  Google Scholar 

  • Miller, P. M. and J. D. Bever. 1999. Distribuiton of arbuscular mycorrhizal fungi in stands of the wetland grassPanicum hemitomon along a wide hydrologic gradient. Oecologia 119:586–592.

    Article  Google Scholar 

  • Miller, R. M., C. I. Smith, J. D. Jastrow, and J. D. Bever. 1999. Mycorrhizal status of the genusCarex (Cyperaceae). American Journal of Botany 86:547–553.

    Article  PubMed  Google Scholar 

  • Miller, S. P. and R. R. Sharitz. 2000. Manipulation of flooding and arbuscular mycorrhiza formation influences growth and nutrition of two semiaquatic grasses. Functional Ecology 14:738–748.

    Article  Google Scholar 

  • Peat, H. J. and A. H. Fitter. 1993. The distribution of arbuscular mycorrhizas in the British flora. New Phytologist 125:845–854.

    Article  Google Scholar 

  • Peng, S., D. M. Eissentat, J. H. Graham, K. Williams, and N. C. Hodge. 1993. Growth depression in mycorrhizal citrus at high-phosphorus supply. Plant Physiology 101:1063–1071.

    CAS  PubMed  Google Scholar 

  • Rickerl, D. H., F. O. Sancho, and S. Ananth. 1994. Vesicular-arbuscular endomycorrhizal colonization of wetland plants. Journal of Environmental Quality 23:913–916.

    Article  Google Scholar 

  • Selelosse, M-A. and F. Le Tacon. 1998. The land flora: a phototroph-fungus partnership? Trends in Ecology and Evolution 13:15–20.

    Article  Google Scholar 

  • Smith, S. E. and D. J. Read. 1997. Mycorrhizal Symbiosis, second edition. Academic Press, Inc. San Diego, CA, USA.

    Google Scholar 

  • Son, C. L. and S. E. Smith. 1988. Mycorrhizal growth responses: interactions between photon irradiance and phosphorus nutrition. New Phytologist 108:305–314.

    Article  Google Scholar 

  • Stenlund, D. L. and I. D. Charvat. 1994. Vesicular arbuscular mycorrhizae in floating wetland mat communities dominated by Typha. Mycorrhiza 4:131–137.

    Article  Google Scholar 

  • Stevens, K. J. and R. L. Peterson. 1996. The effect of a water gradient on the vesicular-arbuscular mycorrhizal status ofLythrum salicaria L. (purple loosestrife). Mycorrhiza 6:99–104.

    Article  Google Scholar 

  • Stutz, J. C. and J. B. Morton. 1996. Successive pot cultures reveal high species richness of arbuscular endomycorrhizal fungi in arid ecosystems. Canadian Journal of Botany 74:1883–1889.

    Article  Google Scholar 

  • Taiz, L. and E. Zeiger. 2002. Plant Physiology, third edition. Sinauer Associates, Inc., Publishers. Sunderland, MA, USA.

    Google Scholar 

  • Tennant, D. 1975. A test of modified line intersect method of estimating root length. Journal of Ecology 63:995–1001.

    Article  Google Scholar 

  • Turner, S. D., J. P. Amon, R. M. Schneble, and C. F. Friese. 2000. Mycorrhizal fungi associated with plants in ground water fed wetlands. Wetlands 20:200–204.

    Article  Google Scholar 

  • Wetzel, P. R. and A. G. van der Valk. 1996. Vesicular-arbuscular mycorrhizae in prairie pothole wetland vegetation of Iowa and North Dakota. Canadian Journal of Botany 74:883–890.

    Article  Google Scholar 

  • Wright, D. P., D. J. Read, and J. D. Scholes. 1998a. Mycorrhizal sink strength influences whole plant carbon balance ofTrifolium repens L. Plant, Cell and the Environment 21:881–891.

    Article  Google Scholar 

  • Wright, D. P., J. D. Scholes, and D. J. Read. 1998b. Effects of VA mycorrhizal colonization on the photosynthesis and biomass production ofTrifolium repens L. Plant, Cell and the Environment 21:209–216.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dunham, R.M., Ray, A.M. & Inouye, R.S. Growth, physiology, and chemistry of mycorrhizal and nonmycorrhizalTypha latifolia seedlings. Wetlands 23, 890–896 (2003). https://doi.org/10.1672/0277-5212(2003)023[0890:GPACOM]2.0.CO;2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1672/0277-5212(2003)023[0890:GPACOM]2.0.CO;2

Key words

Navigation